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Abstract. Quasi-one-dimensional generalizations of different forms of the one-dimensional Boussinesq equations
are derived asymptotically, then, from these quasi-one-dimensional Boussinesq equations, a consistent and
significant second-order KP equation is derived, according to the Kadomtsev-Petviashvili [1] limiting process, the
asymptotic expansions in the derivation of the non-linear Schr6dinger-Poisson (NLSP) system of two equations,
obtained by Freeman and Davey [2], in the long-water-waves limit are also determined.

Finally, I elucidate the influence of a bottom topography on the Boussinesq and KP equations.

1. Introduction

The main objective of this paper is to derive asymptotically various 'quasi-one-dimensional'
model equations for non-linear water waves.

There is always a semantic confusion with respect to counting dimensions in the non-linear
water-waves problem. The non-linear water waves of interest here have three-dimensional
velocity potentials +(x, y, z, t) but two-dimensional free surfaces z = C(x, y, t). In this paper
I consider the non-linear surface water waves of a finite (but small) amplitude in a channel
with an uneven bottom and I suppose that their evolutions are weakly two-dimensional.

In fact, I derive, for these nearly one-dimensional surface water waves, some quasi-one-
dimensional model equations. Naturally, in this case, in all these model equations x and y
have unequal status. It is assumed that there will be a basic non-linear structure moving in
the x-direction, whereas modulations will be in the x, y plane (Infeld [3]).

The wave motion, under force of gravity, of moving body of water, have a free surface in a
channel with an uneven bottom, is one of the most interesting and successful applications of
Nonlinear Hydrodynamics. Studies on water waves have always been enriched by interest
shown among diverse fields of science, including Applied Mathematics and Singular
Perturbation Techniques. Most of the perturbation work presented here is closely connected
with the general presentation by Zakharov, Calogero and Eckhaus. (See Zakharov and
Kuznetsov [4], Calogero and Eckhaus [5, 6], and also Calogero and Maccari [7].)

Given that the wave motion of an inviscid and incompressible fluid (such as water) is
irrotational, then for it would be the obvious choice to derive the classical Laplace
equation. However, Laplace's (elliptic) equation has little to do with waves and this reaction
would be wrong (see, Whitham ([8], Chap. 13)) because of curious effects of the free surface
conditions. Indeed, one boundary condition is given for Laplace's equation, but that is when
the boundary is known (the so-called 'classical' Dirichlet or Neumann problems). Namely,
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two conditions are needed at a free (unknown) surface, z = , because the surface position,
5, has to be determined as well as b.

Furthermore, whereas Laplace's equation is linear, the two boundary free surface
conditions are unfortunately non-linear. In Section 2 I shall give a full mathematical
formulation for the water-waves problem.

However, it is necessary to note that in the presence of a free surface, the vorticity of an
inviscid incompressible body of water does not necessarily remain zero if it is zero initially!
Indeed, the free surface can intersect itself, as happens when a wave breaks and vortex sheets
are formed. In this case, instead of Laplace's equation, it is necessary to consider the full
Euler equations (always the case for an incompressible fluid). I do not consider here this
important, but very difficult, question but analyze only the classical non-linear problem for k
and , when the effect of the surface tension is included.

In this paper the derivation of model equations is given in depth, with rational uses of
asymptotic methods. Indeed, it is important to understand that, in some cases, the
establishment of these model equations is intuitive and heuristic and in fact it is not clear
how to insert the model equation under consideration into a hierarchy of rational
approximations, which in turn result consistently from the exact formulation of the water
waves problem given in Section 2. Here, I note only two examples: the first one is the
derivation of a second-order KP equation in Section 4 and the second is directly related to
the asymptotic expansions for the derivation of the NLS-Poisson system of two equations in
the long waves limit in Section 5, I specify the validity of asymptotic expansions for and C,
relative to a small parameter and I derive for this a new complementary equation associated
with the NLS-Poisson system of two equations.

The 'history' of theoretical research on the waves of a water surface was initiated by
Russell's [9] discovery of the solitary wave phenomenon. His description of the wave as a
solitary elevation of finite amplitude and permanent form was in contradiction with Airy's
[10] shallow water theory prediction [for this shallow water theory see the books by Crapper
([11], Chap. 7) and Mei ([12], Chap. 11)]. The conflict between Russell's observations and
Airy's shallow water theory (and also the classical Stokes' [13] expansion) was resolved
independently by Boussinesq [14-16] and Rayleigh [17], (see, Miles [18] review paper). I
specify only here that the Ursell [19] criterion; that there be a balance between non-linearity
and dispersion, is an essential quality of the solitary wave. Rayleigh's [17] derivation of the
profile of the solitary wave is reproduced by Lamb ([20], Section 252). It is more direct, but
less penetrating than that of Boussinesq. The so-called 'Boussinesq equations' are evolution
equations for free surface displacement and mean horizontal velocity and are not restricted
to unidirectional propagation (for a historical discussion, see Miles [18]). From these
Boussinesq equations it is possible to derive the famous KdVequation (Korteweg and deVries
[211), invoking the prior assumption of unilateral propagation.

Interest waned after the resolution of the Airy-Stokes paradox by Boussinesq, Rayleigh
and the appearance of the KdV equation and was sporadic prior to Zabusky and Kruskal's
[22] discovery that: a solitary wave typically dominates the asymptotic solution of the KdV
equation. Current interest stems from that discovery and is intense (so-called 'solitons
dynamics' and I mention in this way only four books by: Newell [23], Dodd et al. [24],
Drazin and Johnson [25] and Infeld and Rowlands [26]). The theory of solitons is attrac-
tive and exciting. It brings together many branches of mathematics, some of which
touch on deeper ideas and some of its aspects are both amazing and beautiful. But here, in
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this review paper, I do not touch on this problem and mention only the following major
topics of this theory: the conservation laws and the Miura transformation, the inverse
scattering transform, the Lax equation, the Bcklund transformation, and the Hirota
method.

Naturally, for cases in which non-linear surface waves in weakly dispersing shallow water
are not strictly one-dimensional, the KdV equation no longer applies! In fact, it is necessary
to derive a new approximate model equation for these cases-the so-called KP equation.
(For a formal consistent derivation of this KP equation, see the paper by Freeman and
Davey [2].)

Now, it ought to be noted that the inverse method and the structure of the KdV equation
would have remained a mere mathematical curiosity, if further important model equations,
those for water waves, had not been found that were solvable in this way. However, in 1972,
in a paper of fundamental importance, Zakharov and Shabat [27] showed that the non-linear
Schrodinger (NSL) equation could also be solved by the inverse method for initial data
which decayed sufficiently quickly when xl -> (see also: Zakharov and Kuznetsov [4] and
Calogero and Maccari [7]).

For the water-waves problem the NLS equation was derived first, for finite depth, by
Hasimoto and Ono [28], but a similar NLS equation had been deduced earlier, for an infinite
depth, by Zakharov [29]. (For a theory of deep-water waves see the review paper by Yuen
and Lake [30].)

For two-dimensional surface water waves, for finite depth and flat bottom, instead of the
single NLS equation, Benney and Roskes [31] and Davey and Stewartson [32], derive a
system of two equations - the NLS-Poisson equations (see, for instance Mei ([12], Chap. 12).
When surface tension, is taken into account, expressions for the various constant co-
efficients, in the NLS-Poisson system, are given by Djordjevic and Redekopp [33] and
Ablowitz and Segur [34] (see also Craik ([35], Chap. 6).

For an uneven bottom of the channel it is also possible to derive the Boussinesq, KdV and
KP equations (see for instance: Peregrine [36], Ono [37], Johnson [38], Rosales and
Papanicolaou [39], Xue-Nong Chen [40], Levi [41] and Benilov [42]). It is interesting to note
that a KdV soliton travelling from one constant depth to another constant but smaller depth,
disintegrates into several solitons of varying size, trailed by an oscillatory tail. This 'fission'
is clearly related to the result of the inverse scattering method (see Gardner et al. [43])
and the 'perturbed Ono-Johnson KdV' equation predicts the soliton fission that occurs as
a solitary wave moves into a shelving region (Madsen and Mei [44]). Finally, concern-
ing the soliton interactions in two dimensions, I mention the review paper by Freeman
[45].

In Section 2 I give a brief mathematical formulation of the water waves problem and
derive the relevant dimensionless exact Laplace equation and boundary conditions on the
free surface and on the uneven bottom, with various non-dimensional parameters. In Section
3, I derive the quasi-one-dimensional generalized Boussinesq equations and from these
Q1DGB-equations obtain the various forms of the quasi-one-dimensional Boussinesq
(Q1DB)-equations. The second-order KP equation is derived in Section 4, that is, I obtain
again the KP equation and the linear inhomogeneous associated equation describing the
second order KP approximation. In Section 5, I derive the NLSP system of two equations in
the long wave limit and elucidate the correspondence between KP and the Davey-Stewart-
son GNLSP equations. I also specify, by a rational use of the asymptotic method, the
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Freeman-Davey expansions and derive a complementary equation associated with the NLSP
system of two equations. Finally, Section 6 is devoted to a study of the influence of bottom
topography in the Boussinesq and KP equations.

2. Governing equations and boundary conditions

2.1. Starting problem

The classical non-linear water waves problem is to find the irrotational motion of an inviscid,
incompressible, homogeneous fluid, subject to the force of the gravity. The fluids rests on a
horizontal and impermeable bottom of infinite extent at z = -h 0 (where h is supposed
finite) and has a free surface at z = (x, y, t). A Cartesian coordinate system (x, y, z) is
adopted, with z = 0 the position of the undisturbed two-dimensional free surface and the
z-axis positive upwards.

For the above simple problem, the following flat bottom boundary condition:

a4
w= a=0, onz=-h 0 , (1)

must be imposed.
The fluid velocity v = (u, v, w) is expressed by the gradient of a velocity potential 4(x, y,

z, t), and for the function it is necessary to resolve the classical Laplace equation:

V2, -- a + = a + 2 = (2)
Oax2 ay2 az 2

with v =V4, when -h < z < (x, y, t).
The exact kinematic boundary condition (on the free surface) can be derived most readily

by requiring that the substantial derivative of the quantity, f = z - vanish on the free
surface. The result of this condition is that:

a0 a; a a a a;
z t + -on z = (x, y, t) .az at ax ax ay ay O=(xY, 0 (3)

The second boundary condition is the dynamic condition (on the free surface) and it is
obtained from the Bernoulli classical integral for an unsteady potential flow. If it is assumed
that the atmospheric pressure Pa is independent of position on the free surface, and if the
constant of integration C(t) (in the Bernoulli's integral) is suitably chosen, then the exact
condition to be satisfied on the free surface is the following:

aO + gz + - IV412 = O, on z = (x, y, t), (4)

but only when we ignore the influence of surface tension.
The Laplace equation (2), with the three boundary conditions (1), (3) and (4), is our

classical three-dimensional non-linear water waves problem (see for instance, Whitham ([8],
Chap. 13)).

For the above problem, we consider an initial-value problem with the initial conditions:
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a = O· ( X Y and c(x,y,z,O)=0, fort=O, (5)

where A and /o are the characteristic wavelengths (in the x and y directions) for our
three-dimensional water wave motion and a0 is the characteristic amplitude for the elevation
of the free surface.

If the influence of surface tension is taken into account on the free surface, then in lieu of
the dynamic condition (4) it is necessary to write the following more complete dynamic
boundary condition:

at 2 [( a4 ) ( 2y ) + (a) + g= [1+ () + ( ay -

{[j a+(, 222 2

y 2 x ay x ay ( ] x2 (6)

along the free surface z = (x, y, t), where ro is the surface-tension (constant) coefficient and

Po is the density of our incompressible water.
Finally, if we take into account the bottom topography then, instead of the simple

condition (1), we must write the following more complete uneven bottom condition:

o_ rod dG do oG1
oz =go ax ax +G y + y ' G onz =-h(x/l, y/m), (7)

with h (x/l, ym) = -h o + gG(x/l, y/m), where go is a typical elevation for the bottom
topography (go = G(O, 0)) and and m are the scale lengths associated with the variations in
the channel bottom (in the x and y directions).

Concerning the conditions with respect to x and y, as it is assumed that the fluid rests on a
bottom of infinite extent, it is necessary to impose some behavior conditions at infinity in the
x and y directions. In fact, usually it is sufficient to suppose that the wave motion is periodic
in x and y.

2.2. Dimensionless problem

Now, the dimensionless independent variables (with the primes) x', y', z' and t' are defined
by:

x' = x/A o , y' = Y/ , z' = zh o , t' = tt o , (8)

with to = A o/co and co = gho; in this case the Strouhal number

S = Ao/coto 1.

I also scale the functions and C:

4' = 0 and ;' = , (9)
ECoAo ao

with
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e = alh,. (10)

When the primes are dropped for (x, y, z, t), the following dimensionless Laplace equa-
tion instead of (2) is derived:

24>(x, , z, t) a24 A2 24>
+ 2 + + 2 0 , when-1<z<e (x,y,t). (11)

az x 2ay 2

In the Laplace equation (11), the following two non-dimensional parameters appear:

S ho h° (12)
A= ' =1.

Instead of (1) we have

=0, onz=-1. (13)

Instead of boundary conditions (3) and (4), on z = eC(x, y, t), we find:

- [ 2 - + A-2
_ I (14)

az at ax ax ay ay

and

at + +E[a()2 (2( 2+1( 2 (15)
dat x + \(dy) + (]' ) (dy) + , (z)

along the free surface z = eC(x, y, t).
Concerning the more complete boundary condition (6) we may obtain the following

expression (instead of (15)):

a4 e[(042+ 2 (a4 2 +1 (04 2 1
at + + -(ax) + (A) (d) + y ) ]

\ a2 ax ay axy y
=2e 1+E28 \ax

+ + \2x/ ] a2 ' on z =e(x, y, t), (16)

where the non-dimensional parameter

We= 2T (17)
gPoho

is the Bond-Weber number.
Finally, instead of the uneven bottom condition (7) the following dimensionless boundary

condition is obtained:

dz = a [82 X + a2 ayy ] onz=-1+aG(x, ), (18)
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with the following three non-dimensional parameters:

a = go/ho, P = Ao/l, y = ol/m , (19)

and with the uneven bottom horizontal variables:

= O3x, = y. (20)

In the above dimensionless problem: (11), (13), (14) and (15), the parameter = ao/h o is
the non-linearity parameter and for e- 0, with x, y, z and t fixed, and also for fixed values
of 8 and A, instead of (11), (13), (14) and (15) the classical linear water-waves problem for
4 is obtained:

+62 _ 2 = , -1 < Z < ;az2 ax2 ay2

atz

+ = 2 = 0o, z=on z = 0.az +8 at

The parameter 8 is the long longitudinal, (x direction), water-wave parameter and A is the
long transversal, (y direction), water-wave parameter.

In Section 3, we mainly consider the following asymptotic situation:

e<1, 861 and A<1, (22)

with two similarity relations:

82=K0 e and A = OE, (23)

where K and v, are of the order one when - 0.
In fact, we assume that:
(a) water-wave amplitudes are small;
(b) the water layer is shallow relative to typical horizontal wavelengths;
(c) the water waves are nearly one-dimensional; and
(d) these above three small effects all have comparable influence (all three effects balance,

according to the Ursell [19] criterion).
When the parameter a < 1, we have a small effect of the elevation of the uneven bottom

topography. Finally, for 3 > 1 and for y > 1, we have a rough bottom and for 3 1 and
y < 1, a slowly varying bottom.

If we consider now the more complete dynamic boundary condition (16), then it will be
necessary to consider two cases: in the first case it is supposed that We = 0(1), is of the
order one and in this case, in the linear problem (21), the last boundary condition (on z = 0)
must be replaced by the following condition:

2 a (24)3
- +-W- +We =O, onz=O; (24)at2 aZ az3

in the second case it is assumed that
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We>l but 6
2 We = =0(1) (25)

and this last case is very significant in the framework of the Q1DGB-equations (see Section
3). But from these Q1DGB-equations it is not easy to derive a 'unidirectional' limiting
equation similar to the KP equation.

3. Boussinesq equations

3.1. Quasi-one-dimensional generalized Boussinesq (Q1 DGB) equations

First, for the derivation of the so-called Q1DGB equations, let us consider here the
following dimensionless problem according to (2.11), (2.13), (2.14) and (2.16)*:

20 + 52 + = , 1 < < E(X, y, t); (la)
aZ2 ax ay2

=, onz=-1; (b)

a> a; 2 a pa d 2 a x

(t at ax ax ay ay, -- ` 

at 2 2 2xJ dV 

aX2 2 + 2 E ax OX }, z (xy, t) . (d)

Laplace's equation (la) is the only equation which contains z in its solution and this
variation may be made explicit by formally expanding its solution in powers of 62 and A2 and
writing:

= + 6 2, + 64020 + 2 O + 630 + 2A 2 + . (2)

This above asymptotic representation is consistent with our main hypothesis (2.22) and
(2.23).

For 40, it is necessary to solve the following trivial problem:

a2 40 a400
2-

- =° and 0 , onz=-landz=O,
az az

and the solution is simply:

00 -F(x, y, t) . (3)

Below, for simplicity, let us assume that: F(x, y, t) is the value of e (in (2)) on z = -1, and
in this case:

010 = 420 = 201 = 430 = 11 = ... = , on z =-1. (4)

But, according to (lb),
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d =O4- - -o. - k = 0, onz=-1, (5)
Oz az az Oz az

and as a consequence of (2) and (3) we may write immediately the solution for 04o, 20, 001,

30 and 01 in the following explicit forms:

1 82 F 1 04 F
=o (Z + 1); 20 (Z + 1)4 ;1o = 2 224 6X

1 a2F 1 a6F
=-ol (Z + 1)2 30 = ( + 1 )6 ;

1 4 F
> 11 24 x 2 a 2 (Z + 1) .

(6)

. j

Finally, we obtain, instead of (2), the following asymptotic representation for , as
solution of the Laplace's equation with the bottom condition, on z = -1,

2 a2 F (Z + 1) aF A2 12F
((x,y,z,t)=F(x,y,t)- (+l + 1)2 2 +6 241 d F (z+1) 2 d

6 (Z + 1)6 a6F + 2A2 ( Z + 1)4 aF +(7)
720 ax6 24 ax2 ay2

Now, by means of Taylor expansions, it is possible to calculate the derivatives: a0lat,
a>/lax, a/lay, and a0/az (on z = eg(x, y, t)), but for z = 0.

Finally, if we take into account our two boundary conditions on the free surface
z = (x, y, t) (the two conditions (c) and (d)), with the relations for the derivatives on
z = 0, and also the three similarity relations (2.23) and (2.25) we obtain for the two
unknown functions F(x, y, t) and g(x, y, t) the following two approximate equations:

a _F KO aF l__ 2
+- ax''5 f+ e [2 \---- °-at ax2 2dx 2 t x 2 Ko ay2

2 2 3 3
2 K a5FO K0 ( 2 F 2 V0 3F v, (aF 2 KO aF a3F

+ 4a o y d- x 3_ 4aaX t X 2 ax ax2

( a2F = O(E3) ; (8a)KO ; Ox2

and

ag aF v 2a
2 F a aF K a4F

at ax2 Ko ay2 x 6 ax4

2 K
2 a6F K a a 3F\ V2 a ( aF v2 a4F 

when T = 0(1) and with an error of O(e3). Here, equations (8a) and (8b), which include the
terms of order O(e) and O(e2 ), are called the quasi-one-dimensional generalized Boussinesq
(QiDGB) equations.

269
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Naturally, in equations (8a,b) the unknown functions (x, y, t) and F(x, y, t) are implicit
functions of e and we can write:

= o + l +
22 + '; F= FO + eF 1 + e2F 2 + . (9)

With (9), from equations (8a,b), we derive successively the following limiting equations
for: (Fo, 0 ), (F1, 1) and (F2, C2),

aFt a2 at a2F
a-- + -T a o -x2 = ; (lOa)

aF, da2 Ko d3Fo V d2o 1 (aFo 2

dt + g- T 2 ax 2 2 atax2 K y 2 2\ ax) (lOb)

ac1 a2F1 Ko0
4 Fo a aFo v2 a2Fo

at + -2 .. (CO
at ax 2 6 ax4 dx \O;°x Ko ay2

and

F2 2 K0 d3 F1 2 2,1 aFo F1 _ K2 d5Fo KO ( 2F0 2
at x2 2 atax2 Ko ay2 ax dx 24 at ax4 2 -ax2)

vO d3Fao0 v0 (aFo2
Ko a3Fo aFo a ( a2Fo

+ 2 at ay2 -2 y + 2 ox3 x + o -x2 '

a;2 02F2 Ko a4F Vo 
2F, vo a4Fo a { aF1 aFo K

2 a6Foa -7-+-_ +_ + _ a + _
t 'ax 2 6 adx4 Ko ay2 6 ax2ay2 ax 0 d a 1 1.20 ax6

+ Ko d ( a3F) vo a aFo)
6 dx \°dx3 Ko dy ° ay '

(lOc)

3.2. Quasi-one-dimensional Boussinesq (Q1DB) equations

Let us consider now equations (10a) and (10b) and assume that the Bond-Weber number
We = 0(1). In this case, according to (2.25), all the terms are proportional to:

T = K We e, (11)

and are therefore of the order of e.
Hence, instead of equations (10a) and (10b), we obtain the following system of two

equations for Fo and F,:

a2Fo a2Fo
2 2 =0; (12)

at ax

a2F, a2 F1 K0 a4 Fo K0 a4Fo v2 2Fo

at2 ax2 2 at2 ax2 6 aX4 K0 ay2

ad4Fo Fo a aFo da Fo aFo
-We at2 ax2 ax at ax x at ax ' (13)
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after the elimination of functions 'o and 51. Now, if:

F* = F + eF, (14)

then, from (12) and (13), the following single Q1DB-equation for F* is derived:

2F* 2F* v2 2 2F* F 2 \ 2

aF* F VaF _ [We[F* a1 F* 21 aF*] =0,
atT ax Ko ayWe t 

(15)

when we take into account that

a aFa22 a aF s a2F0 a2FO
d (aFo aF 1 d Fo2 1 (dFo 

ax at x at ax\ at ' ax2

The above Q1DB-equation (15) is also obtained directly from the start, problems
(la)-(ld), with the similarity relations (2.23), when we take into account, instead of the
representation (7), the following 'more' complete representation for k(x, y, z, t):

P =Fo(x, y,t)+ E [F(x, y,t)- (z+1)2 a F

2Er&. Y~)c a4FO o 2Fe v2 . 2 Oe
2 F2(X, y, t) + (z (Z + 1) 4

4 o (Z + 1)2 x2 ( + 1)2 aF3 + 24tax4 2 ) V I ay

(16)

where F, F1, F2 ,... are unknown functions of the independent variables x, y and t.
Naturally, in this case, in (16), Fo(x, y, t) is not the value of on z = -1!

Next, it is assumed that:

Fj=Fj +eFjl -- , j=0,1,2,..., (17)

= 0 + E + - .,

and with (16) and (17) it is possible, again, to calculate the derivatives: adlat, a/lax, a/ay
and a/az (on z = e(z, y, t)), but for z = 0.

Finally, from the two boundary conditions (c) and (d), we derive for the functions
(F00, 0), and (Fol + Flo0 G1 , ¢1) a set of limiting equations (very similar to (12) and (13)
after the elimination of 50 and ¢1) and from these two limiting equations the same Q1DB
equation (15), but for the function: F** = F00 + eG1, is derived.

At last, we can write the Q1DB-equation as a system of equations for the free surface
position function (x, y, t) and the horizontal velocity components: u(x, y, t) = aF/ax and
v(x, y, t) = aFlay in he following form (but for We = 0):

O~ a av E a3 u
-d- + Ad [(1 + e)u] + y -6 3 0at ax a[(1+ y 6ax 1 (18)

a; au au a3u av au
ax at EUax a 2 ax ay
Ox at ax 7Ox2 = x y '

Averaging

271
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as z2 a2u
ax - u 2 x O(E2)

and

a'P Z2 2U
ay - e 2 a + O(2),

over the depth yields for u:

e 2U
u = U O(2) , (19a)

and for v

E 2V
= V + + O(e2) . (19b)6 ax2

When (19a,b) are used in the Q1DB-equations (18), we obtain the following form for our
Q1DB-equations:

at + a [( + eC)U] + e a = ;
__ a av
at axT' ay

a; au au £ a3U
ax at ax 3 at ax2

av au
ax ay 

(20)

for U(x, y, t), V(x, y, t) and (x, y, t).
Note that our Q1DB-equations (20) are not similar to the three-dimensional generaliza-

tion of the Boussinesq equations, derived by Infeld ([3]; Appendix 1-BI equations).
Seemingly these BI, Infeld, equations, are inconsistent from the point of view of asymptotic
methodology. Instead of (20), we can also derive two equations for (x, y, t) and U(x, y, t),
if we differentiate the first equation of (20) with respect to x and utilize the third equation of
(20):

a; au aU £ a3

at at ax 3 at ax2

ta +a2 a2U(21)
at ax) + a [(1+ E)U + a

4. The KP limit

Let us now return to QlDGB-equations (3.8a,b), for the functions F(x, y, t) and (x, y, t).
We assume also that: = K We , with We = 0(1).

In relation with the KP limiting process it is necessary to introduce a slow time scale: r = t
and in this case:

F=F(x,y,t,r;e) and g=((x,y,t, ;E), (1)
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with

ad a 
at at a r

Then, instead of (3.8a) and (3.8b), for F(x, y, t, -; ) and (x, y, t, ; ) the following
system of two equations are obtained:

aF f (F K a3F F a2

at f +e axI - 2 atax2 +T -K 0 We 

2 f_ KO a3F K
2

5F K0 (a 2
F 

2 KO aF a3F

2 a7 x2 24 2 axx 2 2 ax ax3 
(d 2F2 2 x2 3 F 

Ko a a \ v o \ 2 v0 d 2 a =O (2a)- v°Wey =(e 3 );
at\ ax 2K0 ay 2 atay2 ay2 J2a)

and

a2F K a4F a aF ag 2+ a2 F
at +ax 6 ax4 axr Ko ay

-2 2 6F K a a d3F) vo a aF) vo a4F } () (2b)
x120 X6 6 ax x K+o ay y 6 ax2ay2 

If the appropriate asymptotic expansions of F and g are:

F = F + eF1+ 2F2 + . . ; = O0 + El + E22 + , (3)

then, as a result, the following set of equations to different powers of e may be derived:

O(EO): d + = a2Fo a O= 0 (4a)

F 1 (aFo 2 Ko 0
3Fo _ We aFO

|-dt + ' + 2 -dx/ 2t x 2 We 0x2 " + =,at + k a) tax ax aT
O(E): a2F1, a, Ko F o 22 (F a (4b)

ax2 at 6 ax4 ax O ax + y2 =;

and

O(E2 ): 

aF2 dF aF Ko o 3F aF1 a2C Ko a3FO Ko a5Fo
d--2 x dx 2 -tIx2 + I4KoWe +at + ax a 2 at ax2 aT ax 2 2 2T ax2 24 at ax4

K/ 2Fo2 K0 a
3 F F0 a / a2Fo v2 tF\ 2

+ x 2 x -"o) + T`o,% `-~-)2 a 3 F 2 ax a2

1o a3 2 a0 o
2 O -We = 0, (4c)

2 at ay P ay
a 2 a2F2 KO 4F v2 2F1 a dF, dF \ ',

at a2 6 ax4 Ko y2 x x ax aj T

K 0 a6 FO Ko ad ( a3 0 v a ( aF\ vo a4F
+ 120 ax6 6ax °O ax3) Ko ay \° ay 6 X2 ay2
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From (4a) it follows that F (and o) depends on x and t either through x - t or x + t.
Here, we shall only consider the wave propagating to the right, and hence we shall assume
that the dependence of F0 (and Co) on x and t is only through the variable =x - t and in
this case:

a a0 
ax ae and t =-

Furthermore, when F, (and C~) depends only on f, T and y, equation (4b) can be reduced
to:

oF, 1 (Fo 2
Ko 3Fo a3 Fo Fo F

af 12\a 2 3 oe aT -;

aC'l a2F o04o o ( 2+ d2Fo v d 2Fo
- af02 6 K0

4 a-\ -/ + KO ay2

and, as a consequence of (5), the classical KP equation, for F0(, r, y), is derived:

a {-2- -+ -We-+ - 0. (6)
ae aT f 2a L a Kofoay

Here we do not investigate the various properties of this classical KP equation (6). For a
study of KP equations in the description of water waves see: Levi [41] and the book of Infeld
and Rowlands [26].

In addition:

dFo
o = ' (7)

but, for the determination of T (,, y), in the expansion (3), it is necessary first to
determine the function F (e, T, y), since

aF,
= - A(Fo) , (8)

with

A(FO) = W - 1 ) + /F (9)

Now, if again F2 and 2 are assumed to be dependent on 5 (and T, y), we may obtain from
(4c) the following result:

F2 F0 aF1, I / 1 a3F aF, a2
= g2 + d F1 -Ko We - 3 +- -T + B(F) - Ko We [A(F)]; (lOa)-Tf 2+ ae K a 3 + 

aC2 02F2 Ko 
4F1 v2 2 F 1 OF OF, a2F

dOf 26 KOf d + 2 
+ 2-( a ) +

df 2 6 K4 Ko ay2 f r aT f

+ C(F) - [A - (F 0 ) a , (10b)

with
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Ko2 5F K0 j 2FO0 2 Ko Fo0 3F0 a [Fo d2FO 1 2F0 1
~B(F) 2 \ d 2 de 3 + K do ,% dB(F) 24 e ' s + -- 2 0 3 +K°[j-T 2 2 --- Of]

+ 1 (Fo + ( (11) 3F2Ko Oy 2 ay

and

Kd OF K d [F dF 0] 2[d (O1 Fo o (12)
120 6 6 6 0f f 4 3 o I ay \O y 6 2y a(y2

Finally, from equations (10a) and (10b), by elimination of the function 2, we may derive
the following inhomogeneous (but linear!) equation for the function F1 (, T, y):

- [2-3---aF + 3 -W-e) aF + K0 We 3 O 2F-ad aT Of 2 f KO ay

= (F) - - B(Fo) ()](T + O Wee ) A(Fo)- C(Fo) (13)

Thus, the KP equation (6) and the linear inhomogeneous equation (13) describe the
second-order 'KP' approximation.

It is now well established that the KP equation is the lowest-order non-trivial consequence
of a perturbation approximation of Q1DGB-equations, for the weakly dispersive case.
Attempts to advance the perturbation analysis to a higher-order have been made mainly
(but, for the KdV theory only!) on the basis of a reductive perturbation theory. Ichikawa
and his collaborators ([46] and [47]) examined corrections to the KdV soliton in the next
higher order of approximation and introduced the notion of 'the dressed KdVsoliton', that is
KdV solitons involving higher-order corrections. However, in their results, which were based
on the reductive perturbation method, the dressed KdV soliton involved the appearance of
secular terms. These secularities have been eliminated by Sugimo and Kakutani [48] by
introducing multiple space and time variables (see for example, the book by Jeffrey and
Kawahara ([49], Section 7.2)).

Here, it is important to note that the KP equation admits also solitary wave solutions.
Indeed, the KP equation (6), for Fo0 (, T, y), can be written as an equation for: (0 = Fola/s,

-~-a50 [0°+ 3 2 2
a o+ 34o Ko +K + a =0, (14)
Of L O 2° 6 3

1 2Ko y
2

when We =0. Now, we can seek as a solution of (14):

g = o(O) , with = -pT + qy. (15)

In this case we obtain a 'KP soliton' solution of (14) in the following (dimensionless) form:

4

sech 2 (1 + 0 T + V2Y] (16)

with
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Ko =3, P =1+ qv0/3, q vo, (17)

and where vo is a parameter describing the (small!) inclination of the wave to the main
direction of propagation. In the absence of the y direction (where v =-0; one-dimensional
case), the solution (16) reduces to the KdV soliton solution.

Introducing solution (16) (for aFola = ~0) into (13), it is possible to find the second-order
term F (O), as a function of 0 and in this case, by analogy it is also possible to introduce the
notion of the 'dressed KP soliton', that is the KP soliton involving second-order corrections.
However, this dressed KP soliton solution can also involve the appearance of secular terms,
and for the elimination of these secularities, in addition to 5 and r, in our above reductive
perturbation method, the following new slow variables must now be introduced:

X = (x - t) 2 e£; T = E 2t r. (18)

Naturally, in this case equation (13) for F changes and in the transformed equation for
Fl(,r, y, X, T) some new terms appear, with derivatives with respect to X and T.
Consequently, it is possible to assume as a soliton solution the following:

F(0; X, T) = x(X, T) sech2{A(X, T)[O + qp(X, T)]} . (19)

Now, we may use the added freedom for the elimination of secularity-producing terms.
But, we will not go into details of such generalizations here.

5. Evolution equations for slowly modulated weakly non-linear water waves

5.1. A generalized KP equation

There do exist other non-linear model equations, having a nature similar to the Boussinesq,
KdV and KP equations, which arise naturally in the asymptotic theory of non-linear water
waves.

As an important example we consider in Section 5.2 below, the derivation of the so-called
'non-linear Schr6dinger-Poisson' system of two equations in the long-wave limit (Freeman-
Davey NLSP equations).

It is now known that for waves on the waver surface, the modulation of a wave packet in
two space dimensions due to dispersion and weak non-linearity is described, to the leading
order of approximation, by the NLSP coupled system of two equations for the wave
amplitude and velocity potential.

For the derivation (see Section 5.2) of this system it is necessary to assume, first, that the
carrier wave (of the form of exp(ikp)) propagates at the phase velocity Cp,

p =x-Cpt, (1)

but the amplitude modulation travels at the corresponding group velocity Cg,

q = (1/KO)[X - Cgt] , (2)

where C and Cg are given (in dimensionless form and according to linearized theory) by:
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Cp = 1-(1/6)82 + ' 'and Cg=1-(1/2)82 + .**, whenS--0. (3)

Then, instead of the time t it is necessary to introduce a new slow time:

r = ( 2/Ko)t. (4)

But before deriving the NLSP equations, it is necessary, however, to modify the form of
Q1DGB equations (3.8a,b), and from this new form it will then be possible to derive a
so-called 'generalized KP' equation.

Therefore, let us return to the Q1DGB equations (3.8a,b) and assume, again, that:

T = K We E, with We = 0(1),

let us also take, in equations (3.8a,b), instead of E, the ratio: 82 /Ko. In this case, instead of
(3.8a,b) we find two equations for:

F(t, x, q; 8 2, Ko) and ~(t, x, ; 82, KO), where 77 = y/ . (5)

Next, according to (1)-(4), it is necessary to introduce in these new equations, for F and
, the following new independent variables:

x 62 t 82 62
xl=, tl= t, t2 t3 = t and T=-2t, (6)~Kg ) ~ K~O fKO K0

and also

a 1 ia
-= + (7a)ax ax Ko ax,

a a 2 a 1 a 82 a 82 
+ + +--+ (7b)at at 6-_l +o 2 2K at3

+ 2 T (7b)

for the derivatives.
In this case, for the functions:

F(x, xl, t, tl,t2, t3,,r 7;8, KO) and r(X, xI,t, tt2, t3, 2;8, Ko),

we again find two equations. Now, the dependent variables (the functions F and ~) in these
last two equations are expanded in the following form:

82
F= Fo(p, q, , T; KO) + -F + ,

K0 1(8)

= O0(P, q, 71, ; Ko) + K %1 + ''

with p = x - t + t, and q =x - t2 + t3.
We note that when, later, a = 1/K, is taken to be small, then the independent variables q,

71 and will be slow variables modulating the rapid variation characterized by the variable p.
Substituting (8), with (1)-(4), in the two equations for F and , and equating terms of

order 2, with a fixed gives, to order 62,
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aF
- X ' (9)

and

aF_ 2OFo 1F Fo 1 FFo 1 a'Fo 1 Fo 2 2;o
al-a X -a 2 X3 -We (10)6 2 -aq 2 aX3 -a \X - XWe --;

and

ga1 a2 F 2 a 0o 1 a o0 1 aco aFo Oao + 2Fo 1 4Fo 2 a2 Fo
a X a - -a + 6p a dO O a aoX2axa ax=a aT 6ap 2 aq ax ax ax 2 6 ax2

(11)

with

aa a+ a q ax ap aq 

As expected, the first equation (9) is insufficient to determine both functions 50 and F0 !
Because of this, it is necessary to consider equations (10) and (11) (second order in 62) to
obtain a consistency condition to do this. To obtain this consistency condition, it is sufficient
to differentiate (10) by a/ax and subtract from (11). As a consequence of this, the following
'generalized' KP equation is derived:

2a0 1 a o 2
2F0 1 3= (1o 

2a + a + + a 3a (' + a 3O We) = 0 (12)
ar 3 ap aq 0 p a x 

With (9) the above GKP equation (12) suffices to determine 5o and F, given the
appropriate boundary conditions. An analogous equation has been obtained by Freeman and
Davey [2], when We = 0. Here we write this GKP equation (12), in the following detailed
form:

2ad0 1 ad0 a0 a 0o 2 a o0
2a d + a dp + a qC + 3ao p + 3a

1 ___0_o 03~0 2 3Co 3 3o0 2 a 2Fo
3k -dp3 3 a + 3 2 + a 2-0 (13a)3k2Tap3 ap aq apaq2 aq3 J a 

with

aFo aF
-_Fo + a (13b)
ap aq'

where k2 = [1 - 3 We] - ' and we assume that k 2 > 0.

5.2. Asymptotic derivation of the NLSP system of two equations in the long wave limit

From the GKP equation (13a), with (13b), we can now proceed to the direct derivation of
the NLSP system of two equations, when a 1.
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First, expand the unknown functions 50 and Fo in the form, with respect to a:

0 =fo + af + a2f2 + - -, Fo = go + ag + a2g 2 + ' - (14)

In this case for fo, go, f, g, f2 and g2 , we obtain the following equations, if we,
successively, equate like terms in a, a' and a 2:

to ,= ago n = a + d' for n = 1 and 2, (15)a p aq

and

82fa
L() 2f° 2fo 0 a =(16a)

L ( p/ ) =-3k2 q + 3fo k2 p 2 ' (16b)

ad~~p ·aq +3f0aq~ 2 fl 
=f, --+1 -+ afo 3 p f l 1 2 pq\p +

/a) {2 f+ 3fo + fgo0 f+ afg0 8 3 a (8 1 82 (2 df (16c)

From (16a) and (15), for fo, we determine f and go in the following form:

fo = AoE + A E -'; (17a)

go = Boo + BoE + B*,E- , (17b)

where E = exp(ikp) and '*' denotes the complex conjugate.
In the above relations (17):

i 1 i 
Bm, =-kA ,; B01 =kAm · (18)

Next, from (15), for fl, we determine the function fi in the following form:

apfi = A10 + AlE + A,, E - ' + "p (19)

with

aBoo aB0~ aB*
A° q All= ' A = q (20)

Now, from (16b) we find for the function g the following equation, if we take into
account the expression of f, according to (17a) and also (19),

L (I)p2) = -k 2[A2,E2 + (Ao*) 2 E-2] , (21)

and the expression of g, is:
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gl = B 10 B 2 + B E+ 2 E - 2 (22)

with

3i 2 , 3i
Bl2 = - 4k A , B*2 = 4k (Ao*) 2 . (23)

We specify that in the above relations (17)-(20), (22) and (23) the coefficients:

Aol,A*, Boo, Bol, B* Alo, Al, AT,, B, B 1 2, B2 

are all functions of q, r and ,7.
Now, it is necessary to consider equations (15), for f 2, and (16c). In fact, equation (16c) is

an equation for f2:

L 3k2 n (24)Lap2 _ z 3k2{N 0 + (NnEn +NnE )} , (24)

where

aAlo [ Aol, aA 0 a2Boo
No = aA +3A°1i +A a )

+
a2 

; (25)aq q aq aq

aA0 1 i a2AO, a2B01
N1 = 2 T 0 2A + 3ik(A 1A 1 + AA 12 )+ 2 (26)

3 aA, aA, aA 1 2N 2 = 2 +6ikAo lA
11

+ 3A - 4 - - 0; (27)aq aq aq

N3 = 9ikA 01A 12 (28)

when the above expressions (17a) and (19) for f and fi are utilized. But from (15), for f2,
and (22):

f2 = A2 + A2+ 22 E -2 + ag2 (29)ap

with

OBIo aB12 aB2A 2 0 - A 12 (30)
aq A2 2 = aq 22 = aq

and consequently, for the left-hand side of equation (24), the following relation is derived

L( / a)=p L( ap -6ik [A 22E2 -A A 2*E ] (31)

Obviously, from (29), (31) and (24), for g2 it is necessary to resolve the following equation

apL agj = -3k 2{-2ikA 22 E 2 + 2ikA 2*2E 2 N3E3 + NE 3+ }, (32)ap ~~~~~~~~~ ~ ~~~~~~~~~~(3(22 )
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and consequently we find the following two compatibility conditions:

No = 0, N= 0. (33)

Finally, we obtain for the following six functions:

Alo, A,, Boo, B, A 1l and A 2 =-2ikBI2 ,

the following four relations

i aBoo aBo, 3i 2
Bo= -k-A °q A10; A 1= q B A12 (34)

and two equations (from (33), (25) and (26)):

AO +3 a IA, 12 + 2°°0 (35)-q aq aq2

and

A, i 2A A1 , 2Bo
2 a2 +k a 2 +3ik(AAo+AA 1 2 )+ 2 =0, (36)

since Ao*lAo, = A01 12.
From (34)-(36) the functions A 1o, All, Bo,, A12 are eliminated and we find for A 1o and

Boo the following NLSP system of two equations:

a2Boo a2B 00 a
2+ 2 + 3 a IA0112 =0 (37)

and

aA0 2A0, 2A 01 9 = (38)
2ik ar aqk2A2 +A 2 A 3k 01 a (38)

From equations (37) and (38) we may rederive the non-linear Schr6dinger and Poisson
equations obtained by Freeman and Davey [2] (but only for k -1). Hence, the amplitude
modulation A01 of a progressive wave-packet of small amplitude (progressing in quasi-one
direction on water of finite depth) may be described by a NLS equation (38), coupled to a
Poisson (P) type equation (37) for the mean part of the velocity potential of the flow Boo.
Note that the equations of non-linear Schr6dinger type in 1 + 1 and 2 + 1 dimensions, have
been obtained from integrable PDE's by Calogero and Maccari [7].

We note also that the NLSP system of two equations (37), (38), was derived by Davey and
Stewartson [32], when k = 1, in the long-wave limit (e -0 and then 8 -- 0), but without any
formal justification. According to Davey and Stewartson [32], in fact, the double limit 6,
a ---> 0 is uniform, since the order in which the limits are taken is immaterial. Equations (37)
and (38) suffice to determine A0 1 and Boo, given appropriate boundary conditions. On
physical grounds a 'reasonable' boundary condition is that, for any fixed time r, the wave
completely dies away sufficiently far from its centre so that:
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1AO,1-*0 and q 0, OB°° O as q2 +2 O . (39)aq a7-

Furthermore, if we suppose that at time t = 0 a progressive wave is established such that
the elevation of the free surface is raised to z = e°0 (ax, ) exp(ix) + C.C. (in dimensionless
form, according to (2.5), and for k= 1), then the appropriate initial condition for A,, is:

AO1(q, , ) = O(ax, 7) ; qlt=o, =ax . (40)

Thus, at this stage, we may associate the following two explicit asymptotic expansions for
the functions 0 and F0:

*o -IEI~o raBOO i Aol i aAE_
o= AoE+AolE +k q k aq

+ 2 A + (Ao)2E- 2 + *, (41)

and

i
Fo = Boo - AolE + TAOlE , (42)

where E = exp(ikp).
But, now according to our above rational asymptotic derivation, in principle we can

extend these asymptotic expansions (41) and (42) up to the term of the order of a3 , for 0,
and up to the term of the order of a 2 , for F0. For this it is necessary to resolve, first,
equation (32) for g2.

Surprisingly, the expression of g2 is then of the following form:

3 aA 2 3 a(A) 2 _2 9 3 3 9 3 3
g2 B2 0 + 8k2 E2 + 8k2 E+ -- iA1 E 3 + -i(A*)3E - (43)= B 20 + 8k 2 aq 8 2 q 16 04 16

and from (29) we obtain for f2 the following expression (the terms with E2 and E- 2 cancel
out!):

+ 27 A3 E3 + 7 27(A) 3 E 3 . (44)

Similarly, for the function gl, from the relations (22) and (23), the following representa-
tion is obtained:

3i 3i
g = BIo -k Ao1E2 + k (A*1 )2 E- 2 . (45)

Therefore, if we should extend (41) and (42) then it is necessary to determine the function
B10(q, r, 71), and for this we can consider the equation for the function f3 and determine the
structure of the right-hand side of this equation!

From the GKP equation (13a) we deduce easily the following equation for f3 :
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L ( fp =-3k2 {M + MnEn + MnE -n (46)
i ap =l

if we take into account the expressions: (17a), for f0, (19), for f and (44), for f 2, where

aA1 ° aA2 a O A * AaA, aA° a2B°
aar aq aq + 1 aq 8q aq aq 2M°=2 d-a0 +-q +3A01 +3A1 +3A- q + 2° (47)

We do not write the corresponding expressions for the terms proportional to E, E2 , E3

and E4 , since we only intend to derive an equation for Blo. From (47) the equation for Bl is
of the following form:

a2 B 0 a2B 10 dBo 3i[A dAo 2A01 .] (48)
aq2 q a a k 2 2 0 q

Finally, we may now perform the following consistent and significant expansions for 50 and
F0:

{ aB0 i aA, i aA 3 2 31*2-2
· -1 AOBoo i A+ i AmE-1+-AolE + (Aol)E ° aq k aq k aq 2

+a -- aB, 27 Aol1E + 27 (A*)3E 3 + 0(a 3);

and

Fo = B -k AoE + kA E + iAE2+ i(A* )2E2 + (a 2 ). (50)

The relevant equations for the functions Ao0 (T, q, ), B(T, q,rq) and B10 (r, q, r) are
equations (37), (38) and (48).

It should be observed that we can in principle extend the above expansions (49) and (50),
if we consider the corresponding equations for f4 , f 5,... and g4 , g5, .... But, in this case it
is necessary also to introduce, with the slow variables T, q and 77, a similar number of new
slow variables as, for example,

T1 = aT, q = aq .... (51)

Indeed, at the right-hand side of equation (46) the term proportional to E is of the
following form:

aA1nMl = 2 a + 2ik[A2 oA m + A12A + A A 2 ]

a A +A*0 2A1 1 3Ao (52
+3 [AolA 10 + olA12 k q2 (52)aqL lO 1 2 k aq2 + 3k2 a3

and this gives a new compatibility relation, which is in fact a new equation between AO,, Boo
and B 0l, which satisfies equations (37), (38) and (48)! It is not evident that this last new
equation is an identity. Therefore, seemingly the problem for A0 ,, Boo and Bl is
overdetermined! To remedy this difficulty we can assume that our functions A,,, Boo and Bo
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are also dependent of the slow variables, T, q, ... , according to (51)! Clearly more
research is needed in this direction!

In conclusion, it is possible to assert therefore that the double limit in which, first, 8-> 0
and then a ->0, described in this section, is valid and correct. Since the more formal
procedure in which first K -- and then 6 -- 0 (note that 82 = E/a) yields the same result,
the double limit 8 and 1/K, = ---> 0 must be valid and uniform with equations (37), (38) and
(48) as appropriate evolutionary equations.

These evolutionary equations (37), (38) and (48) are only relevant equations for the long
water-wave limit in shallow water when:

E -0 and -0.

As this is remarked upon in the Freeman and Davey [2] paper, the two evolutionary
equations (37), (38) and the new equation (48) are derived on he basis of a double-
expansion procedure which assumed that an expansion in terms of 8 could be used first,
followed by an expansion in a. Such a procedure would seem to imply that the parameters 8
and a were quite independent of each other. A close examination of the method indicates,
however, that the results still remain true, even if a is dependent on 8. At first sight, the
retention of terms of order a82 in deriving equations (10) and (11) with the neglect of terms
of order 84 in (3.7) would suggest that some restriction on the size of a relative to was
implied. However, it should be realized that the terms of order 64 neglected in (3.7) are just
those terms which are zero to first order in a because of the value of C, = 1- 2/6 + ... -
taken in accordance with linearized theory, to achieve exactly that similar observation
applies to certain terms of order a864, because of the choice of Cg = 1 - 82/2 +

5.3. Matching between KP and Davey-Stewartson GNLSP equations

Now, it is also important to note that, in a more general case, it is possible to derive a
coupled system of evolution equations for the packet of water waves directly from the
dimensionless problem: (2.11), (2.13)-(2.15) or (2.16), when E-->0 and A = voe, but with 8
and v0 fixed!

For the derivation of this system of two equations (two-dimensional general non-linear
Schr6dinger equation coupled with a Poisson equation), see the papers by: Benney and
Roskes [3], Davey and Stewartson [32], Djordjevic and Redekopp [33], Ablowitz and Segur
[34] and also the book by Mei ([12], pp. 607-618).

Without surface tension (when We =-0) and with dimensionless variables, our starting
problem is the classical water-wave problem: Laplace's equation (2.11), within the water,
together with the surface conditions (2.14), (2.15) and the flat-bottom boundary condition
(2.13).

Only a brief outline of the perturbation analysis need to be given here.
The wavelength of the carrier wave is taken to be 0(1) as E ---> 0, and this corresponds to 8

being fixed in the limit process:

---> and A=voE, withv0 and8 fixed. (53)

Indeed, as shown by the earlier work of Benney and Newell [50] and Davey and
Stewartson [32], it proves convenient to introduce the following multiple slow scales:
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= e(X- Ct), O =y -= y = S, l = t, (54)

and the carrier wave moves at the phase speed Cp and the amplitude modulation moves at
the corresponding group speed Cg, although the specific forms of Cp and Cg are not assumed
a priori.

The wavetrain is so constructed that it be periodic (to all orders in e) in =x - Cpt, with
fundamental periodicity = exp(ii) and amplitude modulation described by the scaled
coordinates (54), whence higher-order terms (in the series expansions in E, according to
(55)) must contain higher harmonics generated by the non-linear coupling.

Now, if as a solution to our classical water-wave problem (2.11), (2.13)-(2.15), with (54)
and the periodicity in 15, the following asymptotic expansions are assumed:

= 0
+

E 1 + E42 +'' and = 0o + E 1
+

E22 + .', (55)

then we may derive for the functions 4n and ,, n = 0, 1, 2, ... , the following problems:

_I7 . 9 .

az a- =

ao +,a,= G=o

a0 +8 2 C G
z0.= P ap

(56)

and

an = c +HIz=o (57)

where Fo = 0, Go = 0, Ho = 0 and F,, G, and H, (n = 1, 2) are known functions.
For 0 and 5o the following leading solution is obtained:

00 = 00oo(4, , ) + Foo(z)[A(4, l, )[ + A*E- , (58a)

o == iCp[A- A*-], (58b)

with

Foo(z) = cosh[8(z + 1)]/cosh(8); E exp(- i),

and Cp is calculated from the dispersion relation for the linear theory,

C = ( ), wo(6) = , with -= tanh(8) . (59)

Next, for 4,, we have a non-homogeneous problem, and this problem is compatible if and
only if:

Cg = Cp[ + (1 _ r 2 )]/2 T= do(8) (60)du'
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again according to linear theory.
It is possible to continue this analysis and to obtain qk2 (and also 2), once the solutions for

the mean flow (0 and 50) and second harmonic (l and f,) have been found. Evaluation of
F2 , G2 and H2 is a straightforward, but rather tedious task!

Then, upon using the boundary condition on z = 0 in (56), for n = 2, it is possible also to
find, from the expression for G2, that the leading-order mean flow or long-wave component

oo(4, r, 61) is prescribed by the equation:

(1 _ C2) 02 oo ° = -[2c + cg(l -02)] AI2 (61)

This last equation, (61), shows that the long-wave component b0o is generated by the
self-interaction of the short wave (characterized by the amplitude function A(4, , )).

Finally, upon comparing the first-harmonic terms in the condition on z = 0 in (56), for
n = 2, with the corresponding G2 and the expression for 2, with the corresponding H2, we
find that the derived two equations are compatible only if the amplitude function satisfies the
following non-linear (Schr6dinger) evolution equation:

aA a2A a2A
2iC-- - [C2 -(1 2(1 - 02)( )] 82 + CCg d62

2 9 1320~ 0 624
=[2Cp + Cg(1- 2 )]A °+ [ 2 -6 + -2 _4] AI 2 (62)

Davey-Stewartson GNLSP equations (62) and (61) together describe the evolution of the
progressive wave, to first order in , with fixed.

For the matching between KP and this GNLSP system of two coupled equations (62),
(61), we consider in (61), (62) the shallow-water limit: 65> 0. In this case, in place of (59)
and (60), we have for C and Cg, respectively, the relations (5.3) and in place of equation
(61):

52 20oo 200 alA123W2 + >2 = 3 da4 (63a)

since - = 6 - 3/3 + ', when 5--*0. By analogy, instead of (62) we find:

2i82A 4
2A 2

2A 2 8oo 9
2i8s2 84 2+Aa =3 + A AIA 2 . (63b)

Now it is necessary to compare the slow variables (54), (4, , 6) with the GKP equation
variables (2), (4), (q, r) and 7/ =y/vo.

In this case we may deduce from this comparison the following relations:

4 = 2q, = 5,7 and - = 8 2 r, (64)

and as a result rederive the NLSP system of two equations (37) and (38), but for A and b00:

2° + 2 3 0 ;
q2 a7 aq (65a)

8A 2 A 82A 9 a0
a2i Or 2 2--AIAI2 -3A =2i 8r -q

2 a72 0
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and with k 1.
Therefore, it is clear that (62) and (61) match with (37), (38), when --->0, i.e.:

00 ---> Boo and A--> A. (66)

Thus, the long-wave limit of the Davey-Stewartson GNLSP-equations, (61), (62),
matches precisely with the short-wave limit KP equation (4.6).

Then, it is confirmed that there is a measure of agreement between the GNLSP-equations
for long waves (86 -- 0), and the KP equation for short waves (K0 - ). Stated more formally:

Lim [(61), (62)] =Lim [(4.6)], (67)
8-0 .-

and, since matching occurs, the coefficients given in (61), (62), when ---> 0, can be checked
against those deduced from (4.6), when K --->.

For the KdV and single non-linear Schr6dinger equations in the one-dimensional case and
for more details of the matching procedure, see Johnson ([51] and [52], pp. 25-43).

6. Influence of an uneven bottom

6.1. Quasi-one-dimensional Boussinesq equations for a variable depth

In dimensionless form, according to (2.11), (2.14), (2.15) and (2.18), we have in this case
the following problem:

6 -52 _ + -2 a"_ -+e A2 d on z = (, , t); (Ib)

and

at 2x 2 + o2 a ll) += 20- =0, nz=E(x,y, t); (1c)

do do ah 2 ahaz S + AY -y-= O onz= =-h(,;a), (t)d)
at ax ax ay ay

where

h(i, ; a) = 1 - G(i, ) , (2)

with

=3x; P=yy. (3)

According to (2.23) we assume again that

6 2 = KE and A=O, whene--0 (4)
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with

K = 0(1) and v= O(1).

In his case from Laplace's equation (la), with the uneven-bottom condition (d), we may
find the following asymptotic expansion for the velocity-potential k:

Ko 02F aF ah
b = F(t, x, y) - e2(z + h)2 ax -1EK O (Z + x 

2 a 4 F 2 2 2 a3

2 { K h )4 a F ( + h)2 +a F + (2 + h) a a24 aX4 2 h a) 2 ax ah

-e 2 (Z + h)F + O(E3 , 2E2). (5)

It is noticed that (5) is valid when y = 0(1) but it is necessary that 3 > e.
If = O(e), then the fifth term in the expansion (5), proportional to 13e2, is of order of

O(e3 ) and we do not take this term into account in this case! In the paper of Liu et al. [53]
this last case is considered correctly and these authors have conjectured a form of the
'modified' KP equation for a variable depth (see, equation (20)). Concerning this modified
KP equation, see also the paper by Xue-Nong Chen [40].

From (5) we can easily obtain the value of derivatives: O/lat, 0/lax, Olay and a4/az (on
z = e£(x, y, t)) for z = 0.

Now, from the first of the boundary conditions (lb) on z = e5(x, y, t) we arrive at the
following approximate equation:

a; a2F O aF d; a2F KgO h3 0 a4 F v2 a2F
-+h +D __ +- ath ax2 ax ax ax 

2 6 ax4 KO ay2

aF ah 3 a3F 2 ah Vo aF ah
Pa-x ax 2 3Ko x3 h + y e y (6)axHaii2 Ox a KO ay ay'

with an error of O(e 2 ).
Next, the second boundary condition (c) on z = E(x, y, t) gives:

aF { 2 (F2 KO a3F 21
- a2 F ah

at C2 axi 2 ataX2h | aJ3EKOat axhax (7)

with an error of O(E2 ).
The two equations (6) and (7) are our quasi-one-dimensional Boussinesq equations for a

variable uneven bottom of the form:

z=-h(, ), with =x and 9=yy. (8)

If h 1, we rederive again, from (6) and (7), the classical Q1DB-system of two equations
for F and ; (but for We = 0):

aF I1 [OF\ 2
Ko a3F _

at +' 2 ax + 2 atax2 - ; (9)
2 4a2a 2

O a2F f a F aF Ko 4 F v2 0a2F= a
at + 3-x: + £ l ax [; a-x J 6x KO ay 
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The above Boussinesq equations (6) and (7), for an uneven bottom, may also be written
in the following form (with an error of O(e2 )):

__ a V2 a0 K0 a 3
2U 2 ah a2 U

- + -x [(h + £)u] + y (hv)- 6 dx ( h dx2 ) =/3eKoh2 d2 ;10)

and

au au aO K d3U ah a2u
+ Eu + -= KohZ 2BE~h ap atar . (11)at + x ax 2 atax2 K ta (11)

where

aF aF au av
v -dx v d and d=dx.(12)

Again from equations (6) and (7) we can eliminate the function g. Indeed, from (7),

IF Ko 0 2 a2F\ ) (13)E
= - + Ex h (13)at 2 ax\haxat a

and if we take into account this above relation (13) in (6), we find for the function F(x, y, t;
h) a single approximate Boussinesq equation for an uneven bottom:

2F j F V (h a /KdFO d 1
at ax ax ay \ ay J t at 2 t

K0 a2 F2 r K 0 a (h h 3Fr 2 ah 3F
-e 2 x (ha + EKh - - 03 ' (14)

with an error of O(E2 ), when /3 > E.
Naturally, if /3 = O(e), then instead of (14) it is necessary to write the following reduced

Boussinesq equation, again with an error of O(e2 ) and with y = 0(1):

a2F a2F 2 V 2F

-it _h 2 - ,Y -h
at a2 K0 a2

_( d[ rdF 2 1IF)2] K 3
4F Ko 2 4F 2 v dh aF.

at 2 axt + 6 h ax 4 2 ax2at2 K ag dy=

for F(x, t, Y; h), where h = h(Ex, ; a) and y = yy.

6.2. KP equation for an uneven bottom

For the derivation of an 'extended KP' equation for an uneven bottom it is necessary to
introduce in the Boussinesq equations (6) and (7), when /3 = e, the following new variables:

X = , Y = yy , r = et (16a)

and
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= h-'/2(Ex, 9; a) dx - t. (16b)

In this case

aa a -1/2 a (1h

ax + h a' 7 I (17a)
a a a a a a
ay - a + ' at a ae '

with

h = h(i, ; a) (17b)

(, 9) e- -| h-1 12 (EX, 9; a) dx. 

Now, it is assumed that

F = F(,, ,,, ) + ;EF + ·; = o, f, , ) + (18)

and equating terms of order EO and e', we may derive the following equations for (F, 0)
and (F,, 5,):

OF° (19a)

_a, a2F, a'0 + 2h112 1 2 ah aF + h ( aF + aF0 a 0) Ko h a 4F

a a 2
- a +2 a-a- + -H a - - a'2 ag a - 6 a 4

V [ 2 a ( aF\ aF0 a2F (19b)
+ o a(h ay)+ ay -(h~ -) + h%--- +h'2 ; (19b)KO ay ay I a+Y \ a yhqaa h 2

OF, i ' {F2 ° 3r1 1(aF0' Koh aFO (19c)

Again, as expected, the first equation (19a) is insufficient to determine both functions 'o
and Fo and it is necessary to go to second order in E to obtain a consistency condition to do
this.

Differentiating (19c) by ala/ and subtracting from (19b) gives:

g_ 1/2 a 0 1 / a0 K a30ah2 _o
+ 2hl'2 + h-1/2 + 3h-lo + K h + - h 2 _0

a-r aT 2 o a+ 3 ha3 K0 a_
2 2 h'4 -a'o , a aF

+ O yhq a + KO al [h aa +h ,=0, (20)

with

Fo = o d' .
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From the above equation (20), when ~0 is independent of the slow time , we may rederive
equation (22) in Xue-Nong Chen's [40] paper.

Naturally, our extended KP equation for an uneven bottom for 40 can be derived directly
from the single Boussinesq equation (15).

Furthermore, if topography is even (h 1), equation (20) is reduced to the classical KP
equation (4.6) and if v0 = 0, equation (20) is reduced to a varying-coefficient KdV equation
that is the same (when a o/ a = 0) as that of Johnson [38].

To get a more concise form of (20), let us take:

o =h (1 1 4 (,, y,:), when = 0, (21)

so that (20) becomes:

0 3 7/4 + Ko hl28 0 h2 _ 0h3'/4( (h-1/4,)

+yw -h1 h [yh-- h =,(22)

with

Fo = h-1 / 4 fYede. (23)

Again, when v= 0 it is possible to rederive the classical KdV equation for an uneven
bottom in several forms and for this one may consult the book of Mei ([12], pp. 560-561).

7. Conclusions

In this review, we have attempted to highlight some of the major findings regarding the
modeling of non-linear water surface waves, with emphasis on the progress made in the past
15 years.

Waves on the free surface of a body of water have always been a fascinating subject, for
they represent a familiar yet complex phenomenon, easy to observe but very difficult to
describe.

It must be kept in mind that, at the present time, (asymptotic) modeling, i.e., the
translation into correctly expressed mathematical terms of a complex physical situation, has
become very important in the realm of scientific research in many fields. This is particularly
true for fluid mechanics (see, e.g., Zeytounian [54, 55]) and so also for the theory of
non-linear water waves, which is considered to be a subdiscipline of fluid mechanics taken as
a whole.

But, in this review we have considered only the classical problem for an incompressible,
irrotational and inviscid fluid (water). The problem of the account of compressibility and
rotational effects from the full Euler equations is another question and for the present time a
general modeling of these effects remains unresolved. It is true that from these full Euler
equations it is possible to derive a KP equation (with variable coefficients), but paradoxically
the derivation of Boussinesq equations is more subtle! Concerning the account of effects of
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viscosity and thermal conductivity, this problem is more complicated, principally because of
the boundary conditions on a free surface. In this case a very interesting problem is the
modeling of 'non-linear waves on the free (inclined) surface of a falling liquid film'.

In future work, we shall investigate (revisit!) these important problems on the basis of
asymptotic modeling.

Hence, for the moment, it has been shown in this review that the limit procedure

8 = K, A = Po, E- 0,

applied to a full water-wave dimensionless potential problem (for a mathematical formula-
tion of the physical water waves problem, see Chapter 13 in the book by Whitham [81)
yields, first, the quasi-one-dimensional generalized Boussinesq equations for the free-surface
position and the value of the velocity-potential on the flat bottom (see equation (3.8)). These
last equations are correct up to order O(E3 ) inclusive.

From these Q1DGB equations we derived, also in Section 3, the properly so-called
quasi-one-dimensional Boussinesq single equation (3.15), with an error of O(e2). Again,
with an error of O(E2), the system of Q1DB equations for the free surface position and the
horizontal velocities components can be written as in (3.20) or (3.21).

Next, in Section 4, the KP equation (4.6) and the associated linear inhomogeneous
equation (4.13) are derived, describing the second-order 'KP approximation'. As an
interesting consequence of (4.13), it is possible to introduce the notion of a 'dressed KP
soliton', that is the KP soliton involving second-order corrections.

In most cases of interest in water waves We < 1/3 and consequently, the KP equation (4.6)
may be integrated to

aF0 3 {aF2 /1 3Fo Vg 2 FO
2- 'd- +2 + We) If 1 = 02 d,aT 2 ~~ a + \'3 - K0 J ay

and this equation is now of the form of an evolution equation for F0.
But, for very thin sheets of water (i.e. We large enough), this last KP equation is false, the

long water waves travel slower than their neighbors, and the integral should be from - to

In Section 5, the evolution of slowly modulated weakly non-linear water waves is
analyzed. First, we derive a 'generalized' KP equation (5.13a), with (5.13b), and obtain for
the long-wave, not only the classical coupled Schr6dinger-Poisson system of two equations
(5.37) and (5.38), for the amplitude of a progressive wave-packet of small amplitude and the
mean part of the velocity-potential of the flow, but also a third complementary equation
(5.48) for the term proportional to a in the expansion of velocity-potential (see (5.50)),
when a---> 0. As a result we can calculate the expansion of the free-surface position up to
order O(a 2) inclusive (see (5.49)) and also the expansion for the velocity-potential up to
order O(a) inclusive, when a-->0.

Next, we confirm that the long-wave limit (5-0) of the full non-linear Schr6dinger-
Poisson coupled system of two equations: (5.61), (5.62), matches precisely the short-wave
limit of the KP equation (4.6) (when Km-->*).

The last section, Section 6, is devoted to the influence of an uneven bottom. For the
derivation of integrable non-linear equations for water-waves in straits of varying depth and
width and also for the solitons in shallow seas of variable depth and in marine straits, see the
papers by David et al. ([56, 57]).
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In the present paper the various forms of Q1DB-equations for a variable depth (see for
example, equations (6.6), (6.7) and (6.14) or (6.15)) are derived. From the equations (6.6)
and (6.7) we derive also an extended KP equation (6.20), for an uneven bottom. Naturally,
in principle, from this last KP equation (6.20) it is also possible to derive a non-linear
Schr6dinger-Poisson system of two equations for variable depth, when Ko--->, but this
derivation would be a very tedious task!

In the deep-water limit:

-- oo but e 1,

and We fixed, we find that the equation for 00, see (5.61), is homogeneous and always of
elliptic type and the solution then reduces simply to

ao00o a000A 0, 0 .aq an

In this case, equation (5.62), for A, becomes

t -aA a2A + a 2A = 2

and the long-wave/short-wave resonance has disappeared. This last Schr6dinger equation
was first derived in the context of deep-water by Zakharov [29]. Since the relative signs of
the two-dispersive terms are opposite (A. < 0, if 1 - 6 We - 3 We > 0, when We # 0, but
,u > 0), then this equation is hyperbolic in the spatial variables. We note also that the
second-harmonic resonance is still present as is manifested by the factor 1/(1-2 We) in the
coefficient X, in the non-linear term.

For a modification of this Zakharov-Schr6dinger equation (new effect introduced to order
e4), see Dysthe [58]. Concerning the non-linear dynamics of deep-water gravity waves, see
the review article by Yuen and Lake [30].

It is interesting also to examine the appropriate near-field of the KP equation and thereby
derive the general form of the initial value problem for this KP equation. It is possible to find
the precise nature of a near-field which will match the far-field (when = et), although a
neighbourhood of the origin must be excluded!

The KP equation (4.6) can be examined as r--->0, by considering equation (3.15) for
F*(x, y, t), when e-0 with x, y and t fixed, whence:

a2F* a2F*

at2 ax2

to leading order.
Thus for right-travelling waves, we have: F* - 9(x - t, y) where J is an arbitrary function

[related to 0; see (2.5)], and matching from the far-field (t--- +c--->0) is therefore
possible if (see the equation (4.6)):

Fo- E(, Y), as r- 0.

Concerning the rigorous results (well-posed nature of the initial value problem, existence
and uniqueness) for the Boussinesq, KdV and NLS equations, the reader can consult the
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paper by Craig and Sulem and Sulem [59]. In the book by Shinbrot ([60], p. 87) the reader
can find also information concerning the first results of the proof of existence of a solution
for the water-wave problem.

The paper by Debnath [61] is devoted to theoretical developments in bifurcation and
non-linear instability problems in applied mathematics and concerning the water-waves
problem (non-linear Rayleigh-Taylor and Kelvin-Helmoltz instability, instability and
bifurcation of non-linear wavetrain) see in this paper, Sections 6.1, 7.1 and 13.1-13.4. The
book by Craik [35] is a comprehensive account of theory and experiment on water-wave
interaction phenomena and phenomena of non-linear hydrodynamic stability, especially
those leading to the onset of turbulence. Finally, in the book by Infeld and Rowlands ([26],
Chap. 10) the reader can find some information concerning 'non-coherent phenomena'.

It should also be noted that most of the perturbative work presented here is closely
connected to the general presentation by Zakharov, Calogero and Eckhaus (see the
corresponding references below).

Finally, we find that for the initial-value water-waves problem, for the velocity potential Qb,
some degree of mathematical intractability seems inevitable here (see Benjamin [62]). We
recognize the probability that the general initial-value problem cannot be correctly posed
(well set), because it is known that in practice water waves may break! - that is, the
(rotational) motion may become turbulent and so lose continuous dependence on initial data
(in this case the emergence of chaos via a strange attractor is possible). This aspect of the
subject still remains largely mysterious, and reservations regarding it are needed to put any
theoretical work on water waves into a proper scientific perspective.

The fact that most existing theory - linearized, long waves and weakly non-linear
approximations - is essentially tentative does not, of course, impair its practical value.
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